“With this paper, we uncover how signals are transmitted across synapses to turn on the switch for plasticity,” Watanabe says. “We demonstrate that glutamate is first released near AMPA-type glutamate receptors, to relay the signal from one neuron to the next, and then near NMDA-type receptors immediately after the first signal to activate the switch for synaptic plasticity.”
This new study was also partly conducted in the MBL Neurobiology course, where Watanabe is a faculty member. “It began in 2018 with (course students) Raul Ramos and Hanieh Falahati, and then we followed up in 2019 with Stephen Alexander Lee and Christine Prater. Shuo Li, the first author, was my teaching assistant for the Neurobiology course for both years,” Watanabe says. He will be returning to the MBL this summer to teach in the course—and discover more.
More information:
Shuo Li et al, Asynchronous release sites align with NMDA receptors in mouse hippocampal synapses, Nature Communications (2021). DOI: 10.1038/s41467-021-21004-x
Citation:
Turning on the switch for plasticity in the human brain (2021, January 29)
retrieved 29 January 2021
from https://medicalxpress.com/news/2021-01-plasticity-human-brain.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.